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a b s t r a c t

Research has demonstrated that value-based decisions depend on not only the relative value difference
between options, but also their overall value. In particular, response times tend to decrease as the
overall (summed) value of the options increase. Standard sequential sampling models such as the
diffusion model can account for this fact by assuming that decision thresholds or noise vary with
overall value. Alternatively, gaze-based models that incorporate eye-tracking data can accommodate
this overall-value effect directly as a consequence of the multiplicative relationship between gaze and
option value. We compare the fit of non-gaze diffusion models to data simulated with a multiplicative-
gaze model. The results show how parameters related to decision thresholds or noise will vary as a
function of overall value, even when there is no such variability in the data generating process. In
empirical data, we find similar patterns where decision thresholds, noise, or non-decision time seem to
vary with overall value. Our results reveal that specific patterns in standard diffusion model parameters
can arise from a latent process of gaze-dependent evidence accumulation.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Does the overall attractiveness of the options in a choice-set
nfluence the decision-making process? The predominant view
s that this ‘‘overall value’’ (OV) should not affect the decision
rocess; the importance of a decision should depend only on
he subjective-value (i.e., utility) difference between the available
ptions (Tversky & Kahneman, 1979; Von Neumann & Morgen-
tern, 1944; Webb, 2018). This is because the relative value
ifference is what the decision-maker stands to gain by select-
ng the best option, relative to the other options. The value
ifference between the options also determines the ease of mak-
ng decisions because larger value differences make it easier
o discriminate between the options and identify the best one.
he value-based decision-making literature is replete with ex-
mples demonstrating decision-makers’ proficiency at quickly
iscriminating between unlike options (Chabris, Morris, Taubin-
ky, Laibson, & Schuldt, 2009; Clithero, 2018; Dutilh & Rieskamp,
016; Jamieson & Petrusic, 1977; Konovalov & Krajbich, 2019;
rajbich, Armel, & Rangel, 2010; Milosavljevic, Malmaud, Huth,
och, & Rangel, 2010). The fact that response times (RT) are
horter for decisions involving options that are on opposite ends
f the value scale seems almost lawlike in nature.
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In contrast, some researchers have noted that OV also impacts
the decision process. In particular, the sum of the options’ values
tends to correlate negatively with RT. In other words, high OV
decisions tend to be faster than low OV decisions (Fontanesi,
Gluth, Spektor, & Rieskamp, 2019; Hunt et al., 2012; Pirrone,
Azab, Hayden, Stafford and Marshall, 2018; Pirrone, Wen and
Li, 2018; Polanía, Krajbich, Grueschow, & Ruff, 2014; Smith &
Krajbich, 2018). In a particularly evocative examination of this ef-
fect, Pirrone, Azab et al. (2018) studied rhesus monkeys choosing
between colored squares, each representing a different quan-
tity of juice. The researchers included occasional trials with two
identical options. They found that RTs were shorter for choices
between two identically large quantities of juice than for two
identically small quantities of juice.

Interestingly, there are analogous effects in perceptual
decision-making, where researchers have noted that decisions
involving high-magnitude stimuli tend to be fast (Bose, Bottom,
Reina, & Marshall, 2020; Polanía et al., 2014; Ratcliff, Voskuilen
and Teodorescu, 2018; Teodorescu, Moran, & Usher, 2016). For
both magnitude and OV effects, the total stimulus intensity (e.g.,
numbers of dots, summed value, etc.) decreases RT while in-
consistently impacting accuracy. In the same article by Pirrone,
Azab et al. (2018) discussed above, the authors also studied
humans completing a brightness discrimination task in which
participants were required to indicate which of two grayscale
patches was brighter. Embedded in this task were trials where

both alternatives were of equal luminance. The researchers found
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hat participants responded faster when choosing between high-
qual-luminance options than low-equal-luminance options.
The literature has struggled to understand these OV effects

rom the perspective of sequential sampling models (SSM). Se-
uential sampling models, in particular the drift diffusion (or
iffusion decision) model (DDM; e.g., Ratcliff & McKoon, 2008),
ave become canonical models for the decision process in both
alue-based and perceptual domains. In the DDM, the decision-
aker evaluates the options, generating and accumulating noisy
vidence for each, until one option accumulates enough evidence
o be chosen. A common assumption among researchers em-
loying these models is that the rate of evidence accumulation
the drift rate) depends on differences between options, and not
he values of each option independently (Krajbich et al., 2010;
ilosavljevic et al., 2010; Ratcliff, Voskuilen, Teodorescu, 2018;
oe, Busemeyer, & Townsend, 2001). This assumption follows
rom the fact that the DDM generates a choice function that is
athematically identical to classic logit models of choice that are
ased only on utility differences (Webb, 2018). Thus, standard
ariants of the DDM do not have a specific mechanism to capture
V effects.
Nevertheless, researchers have explored methods for using

DM parameters to accommodate stimulus magnitude effects in
erceptual decision-making. In one study on perceptual decision-
aking, Ratcliff, Voskuilen, Teodorescu (2018) found that allow-

ng either across-trial variability in drift rate (or the standard
eviation of diffusion noise) to increase linearly with stimulus
agnitude enabled it to better account for magnitude effects. Ad-
itionally, there are several other SSMs that share the assumption
hat within-trial variability increases with stimulus magnitude
Bose et al., 2020; Brunton, Botvinick, & Brody, 2013; Hunt et al.,
012; Kvam & Pleskac, 2016; Smith & Ratcliff, 2009; Teodorescu
t al., 2016).
Other studies have allowed boundary separation to vary based

n stimulus features, such as OV. Boundary separation indexes
he decision criterion, the quantity of evidence a decision-maker
equires before selecting an alternative. Typically, boundary sep-
ration is thought to be fixed before the onset of a trial (Ratcliff
McKoon, 2008; although, this assumption has been challenged
y empirical work on cognitive control, see Botvinick, Braver,
arch, Carter, & Cohen, 2001; Cavanagh et al., 2011; Shenhav,
otvinick, & Cohen, 2013; Vassena, Deraeve, & Alexander, 2020).
onetheless, some researchers have allowed boundary separa-
ion to decrease with higher OV, which reduces RT with only
mall decrements in accuracy (Cavanagh, Wiecki, Kochar, & Frank,
014; Fontanesi et al., 2019; Pirrone, Azab et al., 2018; Pirrone,
en et al., 2018).
These studies relax the common assumption that boundary

eparation and the variability in drift rate are constant across
rials (Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002). While these
odels are able to account for choice and RT patterns in the data,

hey are deviations from how DDMs are typically used.
Here, we propose an alternative explanation for OV effects

ased on existing variants of the DDM that have proven useful
n explaining other patterns in human behavior. We refer in
articular to DDMs with drift rates that incorporate gaze ampli-
ication of value (or other stimulus features; Tavares, Perona, &
angel, 2017). The attentional DDM (aDDM) is the first of these
ariants (Krajbich et al., 2010; Smith & Krajbich, 2018; Smith,
rajbich, & Webb, 2019), but there exist many others (Amasino,
ullivan, Kranton, & Huettel, 2019; Ashby, Jekel, Dickert, & Glöck-
er, 2016; Fisher, 2017; Glickman et al., 2019; Sepulveda et al.,
020; Thomas, Molter, Krajbich, Heekeren, & Mohr, 2019; Towal,
ormann, & Koch, 2013; Westbrook et al., 2020).
In these models, drift rates are a function of the difference
n the options’ subjective values, which are scaled by gaze-based

2

weights. This multiplicative, gaze-based mechanism has two be-
havioral consequences. First, it predicts that more gaze to an
option increases its probability of being chosen, particularly for
high-value options (controlling for relative value differences).
Second, it predicts that high OV decisions will be faster due to
bigger shifts in the drift rate associated with shifts in gaze.

Many studies have confirmed the relationship between gaze
allocation and choice (Krajbich, 2019; Fig. 1A–B). There are clear
correlations between gaze and choice, as well as some evidence
that exogenously manipulating visual attention can bias choice
(Armel, Beaumel, & Rangel, 2008; Gwinn, Leber, & Krajbich, 2019;
Pärnamets et al., 2015; Shimojo, Simion, Shimojo, & Scheier,
2003; Tavares et al., 2017; but see Ghaffari & Fiedler, 2018;
Newell & Le Pelley, 2018). Smith et al. (2019) specifically tested
the multiplicative-gaze hypothesis across six datasets, finding
consistent support for a multiplicative relationship between gaze
and subjective value (Fig. 1C). Therefore, the advantage of this
particular account is that it explains two patterns in the data (RT
and gaze-weighted effects on choice) rather than just one (RT).

While this past work has qualitatively established that gaze-
weighted DDMs produce OV effects, it is still unclear whether
they produce the particular patterns in behavior that would
correspond to increased drift/diffusion variability or decreased
boundary separation with increased OV. That is what we set out
to test in this paper.

These tests are important because eye-tracking data is not
always available, particularly in older research. Thus, we need
to know specifically what kinds of patterns in standard DDM
parameters could, in principle, be explained by an underlying
gaze-dependent DDM. One could look for these patterns in ex-
isting DDM publications and revisit those paradigms with eye-
tracking and gaze-dependent DDMs. This in turn could lead to
new insights into the phenomena studied in those papers.

To examine how the standard DDM might account for gaze-
dependent DDM data, we simulate several instances of a gaze-
based DDM and fit the resulting data with various constrained
versions of the non-gaze-based DDM. We also analyze two empir-
ical eye-tracking datasets that exhibit gaze-dependent behavior
and show how a non-gaze based DDM fit to those data can
similarly produce a variety of value-dependent parameters. In
sum, we show how not accounting for gaze-dependent mecha-
nisms can lead to particular patterns in drift variability, boundary
separation, or processing/motor time based on OV. This high-
lights the importance of accounting for gaze when analyzing
decision-making data.

1.1. The standard DDM

In the DDM (Ratcliff, 1978; Ratcliff & McKoon, 2008), decisions
are made when option information accumulated from a starting
point z, reaches one of two boundaries, 0 or a. The drift rate
of the accumulation process, v, indexes the rate at which evi-
dence is acquired. In value-based two-alternative forced-choice
tasks (2AFC), this parameter represents the relative difference
in strength of preference between the two options. Processes
outside of the evidence accumulation are represented by the non-
decision time parameter Ter . The starting point z is assumed to
vary from trial-to-trial and is drawn from a uniform distribu-
tion with range sz. Non-decision time is also assumed to have
a uniformly distributed trial-to-trial variability with range st.
urthermore, the trial-to-trial standard deviation in drift rate is
xpressed by the parameter η. The model also assumes that there
s random variation in the evidence from one moment to another.
he standard deviation of this variation, s, is typically fixed to 0.1

or 1 to serve as a scaling parameter, since the units of evidence
in the model are arbitrary.
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Fig. 1. Features of multiplicative-gaze DDMs. The effect of relative gaze time (A) and last fixation (B) on choice in data analyzed in Smith and Krajbich (2018). The
robability of choosing an option increases the longer it is gazed at and when it is fixated on last. In these panels, (A-B) points are empirical data, (B) open circles
epresent trials where the left option was fixated on last, open triangles represent trials where the right option was fixated on last, error bars show standard errors
f the mean across subjects, and (A-B) red dashed lines represent predictions from a multiplicative-gaze model. (C) The relationship between overall value and RT
n the six datasets analyzed in Smith et al. (2019). In these panels, the black points are data points and error bars show standard errors of the mean across subjects.
reen lines are linear regressions fitted to the data, very similar to those generated by multiplicative-gaze models. (D) Illustration of the multiplicative effect of gaze
n the decision process. In this model, gaze alternates between the left (L) and right (R) options. The magnitude of the effect of gaze shifts on accumulated evidence
s greater for higher OVs (here 1 vs. 1 compared to 5 vs. 5). Reprinted with permission from Smith and Krajbich (2018), Smith et al. (2019). . (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
r

Usually, researchers parameterize the DDM such that the
oundary separation and starting point are determined before
he beginning of the decision. In other words, these parameters
o not depend on stimulus properties. This means that under
sual assumptions, these parameters should not vary with OV.
n some cases, relaxing these assumptions have led to better
odel fits. Therefore, in the following analyses we bin the data

nto different conditions based on OV and estimate parameters
eparately across these conditions.

.2. Multiplicative-gaze DDMs

Multiplicative-gaze models like the aDDM (Krajbich et al.,
010) similarly view 2AFC as involving a noisy evidence accu-
ulation process with two boundaries. The primary difference
etween this model and the standard DDM is that, in the aDDM,
 n

3

the drift rate changes depending on gaze location. In the standard
DDM one can model the drift rate towards the more valuable
option as a function of the two option values:

v = d ×
⏐⏐rleft − rright

⏐⏐ (1)

where rleft and rright represent the stimulus values of the options
on the left- and right-hand side of the screen, and d is a scaling
parameter to account for the units of r. In the aDDM, this function
has an additional parameter θ that discounts the value of the
non-fixated option.1 More specifically, there are two drift rates,
depending on gaze location:

1 Unlike the standard DDM, the aDDM typically holds the boundary sepa-
ation parameter constant, and instead estimates the standard deviation of the
oise in the diffusion process.
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v
 =

{
d ×

(
rleft − θrright

)
if gaze left

d ×
(
θrleft − rright

)
if gaze right.

(2)

Since θ multiplies the non-fixated item’s value, the gaze-
dependent shifts in drift rate depend on OV. To illustrate this
effect, assume rLeft and rright are both set to 1, d = 0.5, and
θ = 0.3:

v = d ×
(
rleft − θrright

)
= 0.5 × (1 − (0.3 × 1)) = 0.35

v = d ×
(
θrleft − rright

)
= 0.5 × ((0.3 × 1) − 1) = −0.35

However, if rLeft and rright are both set to 5 (using the same values
for d and θ ):

v = d ×
(
rleft − θrright

)
= 0.5 × (5 − (0.3 × 5)) = 1.75

v = d ×
(
θrleft − rright

)
= 0.5 × ((0.3 × 5) − 5) = −1.75

On average, the decision process will terminate more quickly in
the latter case, due to the increased variability in the drift rate
(Fig. 1D).

2. Simulation study

In this section we report the results of a series of simu-
lation studies evaluating how a conventional DDM would re-
cover parameters from data generated with a multiplicative-gaze
model. Our goal was to gauge how DDMs with the assumption
that drift rates are invariant to OV would accommodate data
generated from a multiplicative-gaze model, which integrates
gaze-weighted values into the drift-rate formulation (Eq. (2)).

2.1. General procedure

The general procedure to perform this parameter recovery
exercise was as follows:

1. Generate a single set of group-level parameters xGroupgen .
2. Generate multiple sets of subject-level parameters xSubjgen .
3. Simulate an ‘experimental’ dataset D using the aDDM.
4. Generate a set of fitted group-level parameters xGroupfit−DDM

using different versions of the DDM.

The experimental paradigm simulated here is a 2AFC task
between options given a priori subjective value ratings (Krajbich
et al., 2010). We assume that each option is given a value rating
on a scale from 0–10, and that decision-makers are motivated to
choose the option with a higher value.

2.1.1. Parameter generation
We used a hierarchical approach to generating parameters.

At the group-level, each set of parameters xGroupgen was sampled
from a uniform distribution using ranges that roughly matched
parameter values reported in the literature (Smith et al., 2019):

µd ∈ U(0.0002, 0.0004)
µs ∈ U(0.02, 0.03)
µθ ∈ U(0.1, 0.9)
µTer ∈ U(350, 650).

Next, we generated 40 sets of subject-level parameters xSubjgen
based on the initial set of group-level parameters. These subject-
level parameters were sampled from normal distributions:

di ∈ N(µd, σ
2
d )

si ∈ N(µs, σ
2
s )

θi ∈ N(µθ , σ
2
θ )

Teri ∈ FN(µTer , σ
2
Ter ),
4

Table 1
Values used to simulate data.
Value-Difference (VD) condition Overall-Value (OV) condition Values

Easy (VD = 3) Low value (OV = 3) {0, 3}
Easy (VD = 3) Medium value (OV = 10) {3.5, 6.5}
Easy (VD = 3) High value (OV = 17) {7, 10}
Moderate (VD = 2) Low value (OV = 3) {0.5, 2.5}
Moderate (VD = 2) Medium value (OV = 10) {4, 6}
Moderate (VD = 2) High value (OV = 17) {7.5, 9.5}
Hard (VD = 1) Low value (OV = 3) {1, 2}
Hard (VD = 1) Medium value (OV = 10) {4.5, 5.5}
Hard (VD = 1) High value (OV = 17) {8, 9}

where each ‘experimental’ dataset used a slightly different set of
standard deviation (σ 2) parameters. See Table S1 in the Supple-
mentary Materials for xGroupgen used in each simulation study.

2.1.2. Data generation
We generated datasets using the aDDM with a temporal reso-

lution of 1 ms. Typically, models with multiplicative-gaze, such as
the aDDM, are fit using empirical gaze data (Krajbich et al., 2010).
For these simulations, we randomly sampled gaze durations from
a uniform distribution: U (0.5 × gazemedian, 1.5 × gazemedian). All
simulated datasets were generated using median gaze durations
of 500 ms.

For each simulated dataset D, data were generated using each
of the 40 subject-level parameter sets xSubjgen . Each subject’s data
consisted of nine conditions: three levels of value difference
{1,2,3}, and for each of those, three levels of OV {low, medium,
high}. The specific values for each condition can be found in
Table 1. We generated 1000 trials for each condition. For each
trial, option values were randomly assigned to the left and right
locations, and the first fixation location was determined by trial
number: even-numbered trials started with a left fixation, and
odd-numbered trials started with a right fixation. Subsequent
fixations alternated between the two locations until a decision
was made.

We selected a subset of 100 trials per condition for our sub-
sequent analyses. This subset was selected to improve the com-
parability between the simulation studies and empirical studies
because the latter had fewer trials per condition. Ultimately, the
results of our model fitting exercises were consistent regardless
of the sample size we used (see Table S2 in the Supplementary
Materials for additional details).

2.1.3. DDM model fitting
We fit eight different versions of the non-gaze based DDM

to choice outcomes and RT distributions within each condition.
Here, we only considered models where the drift rate varied
with the value-difference (e.g., Krajbich et al., 2010; Milosavljevic
et al., 2010). Drift rates are held invariant to OV due to the
nature of evidence accumulation in these models. In the DDM,
evidence accumulation reflects the relative difference between
options along some feature like subjective value; therefore, only
value differences are thought to matter during the decision pro-
cess (Ratcliff & McKoon, 2008; Ratcliff, Voskuilen, Teodorescu,
2018). As such, in each of these models, the drift rate parameter
(v) was assumed to be constant across OV conditions and was
only allowed to vary with value-difference. The other parameters
(i.e., a, Ter , and η) were either held constant or allowed to vary
across conditions (Table 2). To allow for a wide range of possible
inferences, we included versions of the model where different
combinations of the free parameters were allowed to vary across
OV conditions.
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able 2
escription of the models fit to simulated datasets.
Model Free

parameters
Constant across
OV

Constant across
all conditions

Fixed
parameters

Model 1 a, Ter , η v – z, s
Model 2 Ter , η v a z, s
Model 3 a, η v Ter z, s
Model 4 a, Ter v η z, s
Model 5 η v a, Ter z, s
Model 6 Ter v a, η z, s
Model 7 a v Ter , η z, s
Model 8 s v η, Ter z, a

Note: Free parameters were estimated independently per OV condition. Fixed
parameters were not estimated from the data. ‘‘a’’ stands for boundary separa-
ion, ‘‘T er ’’ for non-decision time, ‘‘η’’ for across-trial noise in drift rate, ‘‘v’’ for
rift rate, ‘‘z’’ for starting point, and ‘‘s’’ for within-trial diffusion noise.

We considered one additional model. Most variations of the
DM keep within-trial variability constant while freely estimat-
ng boundary separation (a). In contrast, studies using the aDDM
ave held a constant while freely estimating s. Therefore, we con-
idered a model where boundary separation was held constant,
nd s was allowed to vary by OV condition. This model (Model 8)
esembles the σ Model presented by Ratcliff, Voskuilen, Teodor-
scu (2018), where within-trial diffusion noise was estimated as
function of overall magnitude.
All models were estimated using the HDDM toolbox (Wiecki,

ofer, & Frank, 2013). HDDM uses Markov chain Monte Carlo
ampling to approximate group and individual parameters within
hierarchical Bayesian framework. For all models, we report

he mean posterior estimate and 95% highest density interval
HDI). All models were fit using 2 chains of 15000 samples each
ith 5000 burn-in samples. We performed model comparisons
sing DIC (Spiegelhalter, Best, Carlin, & Linde, 2002) and BPIC
Ando, 2007) scores. While DIC scores are available in the HDDM
ackage, we include BPIC scores as a more conservative test when
ccounting for model complexity (i.e., including additional model
arameters).
For Models 1–7, we used a standard fitting approach where

= 1. Model 8 was calculated by transforming the parameters
rom Model 7, which estimated a in each OV condition. Since
odel 8 holds boundary separation constant, we used the average
f the posterior samples of the a parameter (a) across OV condi-
ions in Model 7. To make this transformation, we first divided a
y the posterior samples of each a parameter (i.e., aLow , aMedium,

aHigh) to calculate separate rescaling factors (FOV ) for each OV
condition:

FOV = a/aOV . (3)

For each OV condition, within-trial diffusion noise was calculated
using the following equation:

transformed SOV = FOV . (4)

Similarly, we rescaled v and η by multiplying each posterior sam-
ple of these parameters in a given OV condition by the respective
rescaling factor FOV , and then taking average of those rescaled
sample estimates.

2.2. Simulation Study 1

2.2.1. Data generation
For Simulation Study 1, we used the data-generating process

detailed in Section 2.1.2. When sampling the 40 subject-level
parameters xSubjgen , we used the following standard deviations:

σ 2
= 0.00001
d

5

Table 3
Simulation study 1 model comparison.
Model Free parameters # of parameters DIC BPIC

Model 1 a, Ter , η 12 100268 100278
Model 2 ter, η 10 100641 100964
Model 3 a, η 10 100294 100303
Model 4 a, Ter 10 100266 100278
Model 5 η 8 100684 100691
Model 6 Ter 8 101093 101101
Model 7 a 8 100295 100303
Model 8 s 8 100295 100303

Note: ‘‘a’’ stands for boundary separation, ‘‘T er ’’ for non-decision time, ‘‘η’’ for
across-trial noise in drift rate, ‘‘v’’ for drift rate, ‘‘z’’ for starting point, and ‘‘s’’
for within-trial diffusion noise.

σ 2
s = 0.001
2
θ = 0.01
2
Ter = 10.

Here, we chose conservative values to minimize variability for
his first simulation study. In subsequent studies, we used more
iberal values to allow for more across-subject variability. The
roup-level means for this and all subsequent studies are detailed
n Table S1 in the Supplementary Materials.

.2.2. Model fitting results
The results of Simulation Study 1 are summarized in Table 3

nd Fig. 2. The best fitting model estimated separate a and Ter
arameters in each OV condition (Model 4). For the standard DDM
with s fixed), only models which allowed a to vary (i.e., Models
, 3, 4, and 7) were able to produce posterior predictions that
pproximate the patterns found in the simulated data (Fig. 2A).
hese qualitative patterns can be mostly fit by varying just the a
arameter (i.e., Model 7: Fig. 2B). Although these models overesti-
ate accuracy rates in the High OV condition, the RT patterns are
ell-captured at all but the slowest RT quantiles. In these mod-
ls, the fitted a estimates were smaller in higher OV conditions
µaLow = 2.05 [95% HDI: 2.05, 2.06]; µaMid = 1.93 [95% HDI: 1.92,
.93]; µaHigh = 1.73 [95% HDI: 1.73, 1.74]). In other words, these
odels tell us that boundary separation is decreasing with OV,
ven though we know that the generating model held boundaries
onstant. Moreover, the approximately 16% difference between
aLow and µaHigh is similar to that found in empirical studies
e.g., Cavanagh et al., 2014; Pirrone, Azab et al., 2018; Pirrone,
en et al., 2018).
Models that allowed η to vary and not a (i.e., Models 2, 5, and

) were able to capture the RT patterns, but grossly underestimate
he accuracy in the High OV conditions (Fig. 2C). In these models,
he fitted η values were larger for higher OVs (µηLow = 0.01
95% HDI: 3 × 10−4, 0.03]; µηMid = 0.28 [95% HDI: 0.24, 0.31];
ηHigh = 1.25 [95% HDI: 1.23, 1.28]). These models tell us that

across-trial variability in drift rate is increasing with OV. This
interpretation is accurate, but the gazed-based model goes a step
further, allowing us to attribute some of the noise to gaze effects.

Models that allowed Ter to vary and not a (i.e., Models 2 and 6)
could not account for the differences in accuracy across OV con-
ditions (see Fig. 2D). Moreover, these models mostly capture the
differences between the fastest RT quantiles (Q.1) and miss the
increased spread between OV conditions in the slower quantiles.
In these models, the fitted Ter values were smaller for higher OVs
(µTerLow = 0.43 [95% HDI: 0.43, 0.44]; µTerMid = 0.42 [95% HDI:
0.42, 0.42]; µTerHigh = 0.39 [95% HDI: 0.39, 0.39]). These models
tell us that non-decision time is decreasing with OV, which we
know was not the case in the model that generated the data.

The only other model that captured the patterns found in the
simulated data was Model 8, which held a constant, while allow-
ing s to vary. Within this model, s increased with OV (µ =
sLow



B.R.K. Shevlin and I. Krajbich Journal of Mathematical Psychology 105 (2021) 102594

(

Fig. 2. Quantile-probability (Q-P) plots for (A) data from Simulation Study 1 and (B-E) predictions from exemplar DDM models. Shapes represent the overall value
OV) of a condition (circle: OV = 3; triangle: OV = 10; square: OV = 17), while colors represent the difficulty (value difference; VD) of the condition (red: VD = 3;
green: VD = 2; blue: VD = 1). For each condition, we plot the response time (RT) quantiles for correct (choice probability above 0.5) and error responses (choice
probability below 0.5). Q.9, Q.7, Q.5, Q.3, Q.1 represent the 90%, 70%, 50%, 30%, and 10% quantiles of the RT distributions, respectively. (A) Simulation Study 1 data
(100 trials per condition). If responses were invariant towards OV, we would expect responses within a VD condition to have the same accuracy and RT regardless
of the OV condition. Instead, the simulated data show that within a given difficulty condition, the correct and error responses display a U-shaped pattern, where
accuracy and RT decrease with OV. (B) Posterior-predictive data (open shapes) from Model 4, where boundary separation (a) and non-decision time (Ter ) vary by OV
condition, fit to simulated data from Panel A (solid shapes). (C) Posterior-predictive data from Model 7, where boundary separation (a) alone varies by OV condition.
(D) Posterior-predictive data from Model 5, where across-trial variability in drift rates (η) alone varies by OV condition (E) Posterior-predictive data from Model 6,
where non-decision time (Ter ) alone varies by OV condition. For other models, see Supplementary Figures S1-7. . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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0.93 [95% HDI: 0.93, 0.93]; µsMid = 0.99 [95% HDI: 0.98, 0.99];
µsHigh = 1.10 [95% HDI: 1.10, 1.10]). The interpretation is that
OV increases the within-trial noise in the decision process. Again,
this is not entirely inaccurate, but the source of the variability is
not explicitly attributed to gaze.

2.2.3. Discussion
The results of this simulation study provide preliminary ev-

idence, showing fits of the DDM can yield various explanations
for a behavioral phenomenon when relaxing common assump-
tions about boundary separation and non-decision time. If the
DDM were fit holding variability in drift rate constant across OV
conditions, a likely conclusion would be that OV affects boundary
separation. If instead boundary separation was held constant as
a function of stimulus properties, as is often assumed, then the
conclusion would be that OV affects non-decision time.

2.3. Simulation Study 2

2.3.1. Data generation
For Simulation Study 2, we used the same group-level param-

eters xGroup as were generated in Simulation Study 1. However,
gen

6

when sampling the 40 subject-level parameters xSubjgen , we used the
following standard deviations:

σ 2
d = 0.0001

σ 2
s = 0.01

σ 2
θ = 0.1
2
Ter = 100.

ere, we chose liberal values to maximize inter-subject variabil-
ty for this simulation study.

.3.2. Results
The results of Simulation Study 2 are summarized in Table 4

nd Fig. 3. Similar to Simulation Study 1, the best fitting model
stimated separate a and Ter parameters in each OV condition.
i.e., Model 4). Once again, the versions of the DDM which best
apture the qualitative patterns in the simulated data were those
hat allowed the a parameter to vary with OV. The models that
aried the η parameter with OV produced posterior predictions
hat could not differentiate between the Low OV and Medium
V conditions, and underestimated the accuracy of High OV con-
itions (Fig. 3C), while the models that varied the T could not
er
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Fig. 3. Quantile-probability (Q-P) plots for (A) data from Simulation Study 2 and (B-D) predictions from exemplar DDM models. Shapes represent the overall value
(OV) of a condition (circle: OV = 3; triangle: OV = 10; square: OV = 17), while colors represent the difficulty (value difference; VD) of the condition (red: VD = 3;
green: VD = 2; blue: VD = 1). For each condition, we plot the response time (RT) quantiles for correct (choice probability above 0.5) and error responses (choice
probability below 0.5). Q.9, Q.7, Q.5, Q.3, Q.1 represent the 90%, 70%, 50%, 30%, and 10% quantiles of the RT distributions, respectively. (A) Simulation Study 2 data
(100 trials per condition). (B) Posterior-predictive data (open shapes) from Model 7, where boundary separation (a) alone varies by OV condition, fit to simulated
data (solid shapes). (C) Posterior-predictive data from Model 5, where across-trial variability in drift rates (η) alone varies by OV condition (D) Posterior-predictive
data from Model 6, where non-decision time (Ter ) alone varies by OV condition. . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
differentiate between any of the conditions (Fig. 3D). Although
the model that varied the a parameter with OV slightly underes-
timated RTs and overestimated the High OV condition’s accuracy,
this model produced predictions that could easily distinguish the
different conditions (Fig. 3B).

2.3.3. Discussion
We show that models that vary the boundary separation

with OV can capture the basic patterns of data generated with
attention-based processes, even when there was increased inter-
subject variability across multiple decision parameters.

2.4. Simulation Studies 3–4

To confirm the results discussed above, we generated two
more simulated datasets using liberal standards for parameter
variability with different sets of group-level parameters.

2.4.1. Data generation
For Simulation Studies 3–4, we used identical procedures to

Simulation Study 2. The only difference was that we sampled a
new set of group level parameter values for each study.
7

Table 4
Simulation study 2 model comparison.
Model Free parameters # of parameters DIC BPIC

Model 1 a, Ter , η 12 114087 114097
Model 2 ter, η 10 114395 114404
Model 3 a, η 10 114168 114177
Model 4 a, Ter 10 114084 114094
Model 5 η 8 114409 114416
Model 6 Ter 8 114949 114956
Model 7 a 8 114168 114175
Model 8 s 8 114168 114175

Note: ‘‘a’’ stands for boundary separation, ‘‘T er ’’ for non-decision time, ‘‘η’’ for
across-trial noise in drift rate, ‘‘v’’ for drift rate, ‘‘z’’ for starting point, and ‘‘s’’
for within-trial diffusion noise.

2.4.2. Results
The results of Simulation Study 3 and Simulation Study 4

are summarized in Table 5 and Fig. 4. Similar to the previous
simulation studies, the best fitting model in both Simulation
Study 3 and Stimulation Study 4 estimated separate a and Ter
parameters in each OV condition (i.e., Model 4). Models that allow
a to vary with OV could capture the qualitative order of RTs and
accuracy rates found in the simulations. However, these models’
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Table 5
Simulation studies 3 and 4 model comparison.
Model Free parameters # of parameters Simulation Study 3 Simulation Study 4

DIC BPIC DIC BPIC

Model 1 a, Ter , η 12 146256 146266 126911 126921
Model 2 ter, η 10 146673 146682 127125 127133
Model 3 a, η 10 146430 146439 126924 126932
Model 4 a, Ter 10 146253 146263 126908 126918
Model 5 η 8 146732 146739 127144 127150
Model 6 Ter 8 148256 148264 127196 127203
Model 7 a 8 146560 146467 126921 126928
Model 8 s 8 146560 146467 126921 126928

Note: ‘‘a’’ stands for boundary separation, ‘‘T er ’’ for non-decision time, ‘‘η’’ for across-trial noise in drift rate, ‘‘v’’ for drift rate, ‘‘z’’
for starting point, and ‘‘s’’ for within-trial diffusion noise.
Fig. 4. Quantile-probability (Q-P) plots for data from (A) Simulation Study 3 and (B) Simulation Study 4 data (100 trials per condition). Shapes represent the overall
value (OV) of a condition (circle: OV = 3; triangle: OV = 10; square: OV = 17), while colors represent the difficulty (value difference; VD) of the condition (red:
D = 3; green: VD = 2; blue: VD = 1). For each condition, we plot the response time (RT) quantiles for correct (choice probability above 0.5) and error responses
choice probability below 0.5). (C, D) Posterior-predictive data (open shapes) from Model 7, where boundary separation (a) alone varies by OV condition, fit to
imulated data (solid shapes). . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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osterior predictions were less reliable in capturing the large
ccuracy difference between the conditions in Simulation Study
.

.4.3. Discussion
We confirm that conventional versions of the DDM will iden-

ify boundary separation as the mechanism responsible for gen-
rating the OV effect. Although these models capture the basic
ehavioral patterns, they miss certain features in the data, such
s the negative correlation between accuracy and OV.
8

.5. Simulation Study 5–8

For Simulation Studies 5–8, we explored the robustness of the
revious results by examining data generated under a variety
f circumstances. When generating each dataset, we limited the
nter-subject variability for all but a single parameter. For Sim-
lation Studies 5–8 we evaluated the impact of more variability
n the drift rate scaling (d) parameter, within-trial variability (s)
parameter, attention (θ ) parameter, and non-decision time (Ter )
parameter relative to the other parameters, respectively.
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Fig. 5. Quantile-probability (Q-P) plots for (A) Simulation Study 5, (B) Simulation Study 6, (C) Simulation Study 7, and (D) Simulation Study 8 (100 trials per
condition). Posterior-predictive data (open shapes) from Model 7, where boundary separation (a) alone varies by OV condition, fit to simulated data (solid shapes).
hapes represent the overall value (OV) of a condition (circle: OV = 3; triangle: OV = 10; square: OV = 17), while colors represent the difficulty (value difference;
D) of the condition (red: VD = 3; green: VD = 2; blue: VD = 1). For each condition, we plot the response time (RT) quantiles for correct (choice probability above

0.5) and error responses (choice probability below 0.5). . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Table 6
Simulation studies 5–8 model comparison.
Model Simulation Study 5 Simulation Study 6 Simulation Study 7 Simulation Study 8

DIC BPIC DIC BPIC DIC BPIC DIC BPIC

Model 1 110918 110928 117142 117152 123959 123969 111174 111184
Model 2 111834 111184 117524 117534 123976 123984 111225 111323
Model 3 111158 111167 117162 117170 123955 123964 111173 111181
Model 4 111178 111187 117138 117147 123956 123966 111172 111181
Model 5 112118 112125 117610 117618 123982 123988 111290 111296
Model 6 115386 115393 118708 118715 123973 123981 111221 111229
Model 7 111582 111589 117160 117167 123953 123960 111170 111177
Model 8 111582 111589 117160 117167 123953 123960 111170 111177

Note: ‘‘a’’ stands for boundary separation, ‘‘T er ’’ for non-decision time, ‘‘η’’ for across-trial noise in drift rate, ‘‘v’’ for drift rate, ‘‘z’’ for starting point, and ‘‘s’’ for
within-trial diffusion noise.
(
m

2.5.1. Data generation
For each simulation study, we used the procedures outlined in

Section 2.1.2 to generate a unique set of group-level parameters
xGroupgen . When sampling the subject-level parameters xSubjgen , we used
the conservative standard deviations from Simulation Study 1 for
all parameters except d (Simulation Study 5: σ 2

d = 0.0001), s
(Simulation Study 6: σ 2

s = 0.01), θ (Simulation Study 7: σ 2
θ =

.1), or T (Simulation Study 8: σ 2
= 100).
er Ter

9

2.5.2. Results
The results of Simulation Studies 5–8 are summarized in Ta-

ble 6 and Fig. 5. The best fitting model in Simulation Study 5
estimated separate a, Ter , and η parameters in each OV condition
i.e., Model 1). In Simulation Study 6, the best fitting model esti-
ated separate a and Ter parameters in each condition (i.e., Model

4). In Simulation Studies 7 and 8, the best fitting models es-
timated separate a parameters in each condition (i.e., Model
7).
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.5.3. Discussion
Interestingly, the most complicated model best fit the data in

imulation Study 5. Evidently the across-trial variability parame-
er (η) in the DDM was needed to account for the extra variation
n the drift rate scaling parameter (d). However, all datasets were
est fit with models that allowed boundary separation to vary
ith OV.

. Empirical study

The goal of this section is twofold: first, we show patterns in
mpirical data (Cavanagh et al., 2014; Smith & Krajbich, 2018)
hat demonstrate the OV effect; second, we examine DDM fits
o that data, to see whether patterns in the parameter values
orrespond to what we saw in the simulation studies. We find
hat value-dependent boundary separation, non-decision time,
nd drift-rate variability all improve model fit.

.1. Method

.1.1. Dataset 1
In this reinforcement learning study (Cavanagh et al., 2014),

articipants (N = 20) initially learned three stimulus pair-
ngs with the following probabilities of being the correct choice:
:B (80%:20%), C:D (70%:30%), and E:F (60%:40%). Each stimulus
as a unique Japanese Hiragana character. Participants went
hrough this training phase until they reached a minimum cri-
erion of choosing the better stimulus in each pair. Participants
hen proceeded to the testing phase where they chose between
ll possible pairings for 240 trials across two sessions.
We classified each trial according to the OV of the stimuli in

he trial: low value trials containing only low probability stimuli
20%, 30%, or 40%), high value trials containing only high proba-
ility stimuli (60%, 70%, or 80%), or mixed value trials containing
ne low value stimulus and one high value stimulus.
We excluded trials with excessively fast (slow) decisions, less

more) than 2 standard deviations below (above) participant-
evel means, using log(RT). Such trials are likely to have been
erminated due to accidental button presses, intentional skipping,
r distraction. Using these criteria, we excluded 3.7% of trials.

.1.2. Dataset 2
Participants (N = 44) in this study (Smith & Krajbich, 2018)

irst rated 147 food items on a scale from −10 to 10 before
aking 200 choices between positively rated items (rating > 0).
lthough participants in this study completed three other choice
asks (200 trials each), we only focus on the food choice data.2
ood items were selected such that no item was used in more
han 7 trials and the maximum absolute rating difference was
. Some participants (n = 22) did not have a sufficient number
f positively rated food items to generate 200 valid trials, so
hese participants completed as many trials as could satisfy the
onstraints (M = 171.3 trials). Participants earned a $5 show-up
ee, additional money from the other tasks, and a food chosen
rom one random trial.

We classified each trial according to the OV of the food items
n the trial. Low value trials were those where both food items
ere less than the median value (5.5), high value trials were those
here both items were greater than the median value, and mixed
alue trials were those with one low and one high value item.
e excluded participants (n = 20) with less than 10 trials in

ny of the three conditions. We also excluded one participant
hose mean RT (3.39 s) was 60% slower than the group mean

2 The other tasks involved multiple attributes/stimuli per option, and thus
equire additional assumptions about how subjective value is calculated.
10
Table 7
Description of the models fit to empirical datasets.
Model Varies with

OV
Constant across
conditions

Drift rate (v)
formulation

Fixed
parameters

DDM 1 – a, Ter Eq. (5) η, z
DDM 2 a Ter Eq. (5) η, z
DDM 3 Ter a Eq. (5) η, z
DDM 4 η a, Ter Eq. (5) z

Note: Free parameters were estimated independently per OV condition. Fixed
parameters were not estimated from the data. ‘‘v’’ for drift rate, ‘‘a’’ stands for
boundary separation, ‘‘T er ’’ for non-decision time, ‘‘η’’ for across-trial noise in
drift rate, and ‘‘z’’ for starting point.

excluding that participant (1.43 s). Furthermore, we excluded
trials with excessively fast (slow) decisions, less (more) than 2
standard deviations below (above) participant-level means, using
log(RT). Using these criteria, we excluded 4.3% of trials.

3.2. Analyses

We fit the DDMs to choice outcomes and RT distributions
using the procedures outlined in Section 2.1.3. We estimated
four different versions of the DDM. Once again, the drift rate
parameter (v) was assumed to be constant across OV conditions;
it was only allowed to vary with trial-level value-difference:

v ∼ vIntercept + vDif (rleft − rright ), (5)

here rleft and rright refer to the value of the left and right options,
espectively. Additionally, the starting-point parameter was set to
= a × 0.5. The other parameters (i.e., a, Ter , and η) were either
eld constant or allowed to vary across conditions (Table 7).
All models were estimated using the HDDM toolbox (Wiecki

t al., 2013). For all models, we report the mean posterior esti-
ate and 95% highest density interval (HDI). All models were fit
sing 2 chains of 15000 samples each with 5000 burn-in samples.
We performed model comparisons using DIC (Spiegelhalter

t al., 2002) and BPIC (Ando, 2007) scores. To statistically test
he difference in parameter values, we report Bayes Factors to
uantify the strength of evidence for or against the null hy-
othesis using the Savage–Dickey density ratio (Wagenmakers,
odewyckx, Kuriyal, & Grasman, 2010).
We conducted posterior predictive checks to assess the predic-

ive accuracy of each model. From each model we sampled 100
ets of parameter values from the posterior distributions and sim-
lated a dataset for each participant using those parameters. For
ach sample, we binned participants’ trials into groups based on
alue difference and overall value (Dataset 1: 9 groups; Dataset 2:
2 groups). We then separated the trial bins into correct and error
esponses and calculated RT quantiles for each. This posterior
ata was then compared to that of the empirical data.

.3. Results

.3.1. Behavioral results
What are the behavioral markers of OV? Fig. 6 illustrates some

f these effects in the two empirical datasets. In Dataset 1 (panel
), High OV trials (squares) were slightly less accurate than both
ow OV (circles) and Mixed OV (triangles) trials. Additionally,
oth error and correct responses in High OV trials (squares)
ere much faster than their Low OV and Mixed OV counterparts
cross the RT quantiles in both hard (blue) and moderate (green)
ontexts. Notably, correct responses in both hard and moderate
igh OV trials were almost as fast as those in the easy, Mixed OV
rials.

Similarly, Dataset 2’s (panel B) correct responses in High OV
rials were also faster than in the Low OV trials for most RT
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Fig. 6. Empirical choice behavior by OV. Panels show the relationship among RT-conditioned choice accuracy (i.e., the probability of choosing the better option),
alue, and difficulty. Shapes represent the overall value (OV) of a condition (circle: low OV; triangle: mixed OV; square: high OV), while colors represent the difficulty
value difference; VD) of the condition (red: easy conditions; green: moderate conditions; blue: hard conditions; purple: equal value conditions). For each condition,
e plot the response time (RT) quantiles for correct choice (choice probability above 0.5). Q.9, Q.7, Q.5, Q.3, Q.1 represent the 90%, 70%, 50%, 30%, and 10% quantiles
f the RT distributions, respectively. Panel (A) is based on choice and RT behavior from Dataset 1 (Cavanagh et al., 2014), where value represents probability of
inning. Panel (B) is from Dataset 2 (Smith & Krajbich, 2018), where value represents subjective value ratings on a scale from 1 to 10. . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
uantiles regardless of difficulty. Correct responses in the High
V trials were also faster than Mixed OV trials across difficulty
evels, except for the fasted RT quantile (Q.1) in the moderate
ifficulty condition and the two slowest RT quantiles (Q.7, Q.9)
n the hard difficulty condition. Additionally, the relationship
mong RTs between these conditions was less consistent for error
esponses.

While the High OV trials had the lowest accuracy in Dataset
, this was more variable in Dataset 2. In the latter data, High OV
rials were more accurate than Low OV trials for hard conditions,
ut less accurate in moderate conditions. Accuracy was higher in
ixed OV trials than High OV trials for both difficulty conditions.
Overall, the empirical data from Dataset 1 reasonably resemble

he data from the simulation studies. When excluding the Mixed
V trials, OV decreases both accuracy and RT, generating a U-
haped pattern among conditions with the same difficulty in the
P plots. In contrast, the empirical data from Dataset 2 demon-
trate cases where OV increases accuracy while decreasing RT.
And while OV had mostly symmetrical effects on correct and error
responses in both the simulation studies and Dataset 1 (ignoring
Mixed OV), there is noticeable asymmetry between the RTs of
correct and error responses in Dataset 2. Moreover, Dataset 2
exhibits somewhat different patterns at fast and slow quantiles,
at least for hard decisions.
11
In summary, these qualitative patterns suggest that OV is pri-
marily impacting the RT distribution, rather than accuracy rates.
Correct responses in High OV trials were almost always faster
than in Low OV trials. However, High OV accuracy was sometimes
higher and sometimes lower than in Low OV trials, depending
on the difficulty of the condition (quantitative analyses of both
accuracy and RT can be found in the Supplementary Materials).

3.3.2. Model fitting results
To evaluate whether variable boundaries significantly im-

proved the DDM, we compared model fits using the deviance
information criterion (DIC; Spiegelhalter et al., 2002) and the
Bayesian predictive information criterion (BPIC; Ando, 2007; see
Table 8).

Dataset 1 was best fit by a model where boundary separation
varied with OV (DDM 2). In contrast, Dataset 2 was best fit by
the non-decision time variant (DDM 3). According to the former
model (DDM 2), response caution is decreasing with OV. The
latter model (DDM 3) indicates that basic encoding and/or motor
responses are becoming faster with OV.

We followed up these analyses with Bayesian hypothesis test-
ing on the parameters that were estimated separately for each
OV condition among these best fitting models. We ran three sets
of tests, comparing the difference between parameter estimates
in (1) High OV and Low OV trials; (2) High OV and Mixed OV
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Fig. 7. Quantile-probability plots for the DDM fit to Dataset 1. The plots display the empirical (solid shapes) and posterior-predictive (open shapes) response
proportion and RT quantiles for choosing the correct (right side of 0.50) and error (left side of 0.50) option. Shapes represent the overall value (OV) of a condition
(circle: Low OV; triangle: Mixed OV; square: High OV), while colors represent the difficulty (value difference; VD) of the condition (red: easy conditions; green:
moderate conditions; blue: hard conditions). (A) The standard DDM alone does not reproduce the OV effect on RTs. (B) Adding value-dependent boundaries allows
the model to generate the OV effect on RT but exaggerates the difference between the High OV and Low OV conditions, especially at slower RT quantiles (Q.7,
Q.9). (C) Value-dependent non-decision time generates the OV effect with smaller differences between the High and Low OV conditions but does worse at capturing
the error RTs. (D) Value-dependent across-trial variability generates similar predictions as the boundary-separation model but underestimates the difference in RTs
between the Mixed OV and Low OV conditions. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Table 8
Model fit indices of the models fit to empirical data.
Model 1 OV-dependent parameter DDM

DIC BPIC

Dataset 1 – 8472 8525
Dataset 2 – 9232 9283

Model 2

Dataset 1 a 8366 8452
Dataset 2 a 9196 9279

Model 3

Dataset 1 Ter 8386 8464
Dataset 2 Ter 9173 9251
Model 4

Dataset 1 η 8400 8454
Dataset 2 η 9206 9260

Note. Here, ‘‘a’’ stands for boundary separation, ‘‘T er ’’ for non-decision time, and
‘η’’ for across-trial variability in drift. Bold font indicates best fitting model. See
Table S83 in the Supplementary Materials for additional details.

trials; and (3) Mixed OV and Low OV trials. As detailed in Section
3.2, we report Bayes Factors (BF) from the Savage–Dickey density
ratio test favoring the null hypothesis. For these tests, BF values
 a

12
above 1 represent support for the null hypothesis that parame-
ters are equal between OV conditions, while BF values below 1
represent support for the alternative hypothesis that parameters
differ between conditions.

For Dataset 1, we found strong evidence that boundary sepa-
ration was reduced in the High OV trials compared to the Low OV
trials (DDM 2: BF = 0.162). There was strong evidence against a
difference between the Mixed OV and Low OV boundaries (DDM
2: BF = 6.813), and very weak evidence that boundaries in the
High OV trials were reduced compared to the Mixed OV trials
(DDM 2: BF = 0.800).

For Dataset 2, we found weak evidence that Low OV had longer
non-decision time compared to both High OV (DDM 3: BF =

.442) and Mixed OV conditions (DDM 3: BF = 0.697). Addition-
ally, we found weak evidence against a difference between the
High OV and Mixed OV trials (DDM 3: BF = 1.590).

Next, we turn to posterior predictive checks. We checked
hether the various models could correctly predict the mean
ccuracy of each condition, as well as the RT quantiles for correct
nd error responses. As can be seen in Fig. 7, the DDM is unable
o predict the observed pattern of fast High OV correct and error
esponses in Dataset 1, unless value-dependent parameters are
dded. The posterior predictive check for Dataset 2 was more
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Fig. 8. Quantile-probability plots for the DDM fit to Dataset 2. The plots display the empirical (solid shapes) and posterior-predictive (open shapes) response proportion
and RT quantiles for choosing the correct (right side of 0.50) and error (left side of 0.50) option. Shapes represent the overall value (OV) of a condition (circle:
Low OV; triangle: Mixed OV; square: High OV), while colors represent the difficulty (value difference; VD) of the condition (red: easy conditions; green: moderate
conditions; blue: hard conditions; purple: equal value conditions). (A) The standard DDM only produces the OV effect in the slowest RT quantiles, and only in the
Moderate and Hard difficulty conditions. Adding value-dependent boundaries (B), non-decision time (C), or drift variability (D) allows the model to generate the OV
effect for additional RT quantiles. However, each of these models exhibits substantial bias. . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
ambiguous. As can be seen in Fig. 8, none of the models can
reliably produce the OV effect in all RT quantiles.

Overall, we found that several different model parameters
ould account for the OV effect in empirical data. In these mod-
ls, boundary separation and/or non-decision time appeared to
ecrease in the High OV trials.

. Discussion

Empirically, increases in overall value (OV) result in shorter
ecision times. Recent research has argued that this OV effect
s due to gaze amplification of value during the decision pro-
ess (Smith et al., 2019), but there are other explanations that
nvolve drift rate variability or boundary separation. Here, we
emonstrated patterns in DDM parameters that can result from
itting the DDM to data generated from a gaze-based DDM. In
articular, we observe drift-rate variability that increases with
V, decision boundaries that decrease with OV, or non-decision
imes that decrease with OV. We also observed similar patterns
n two empirical datasets.

When it comes to computational modeling, researchers can
ake a variety of approaches when adjusting model parameters
o capture behavioral phenomena such as the OV effect. How-
ver, with each approach comes an implicit assumption about
he latent cognitive mechanisms. Throughout our analyses, we
13
focused on boundary separation and non-decision time because
these are parameters that other studies have allowed to vary with
OV (e.g., Cavanagh et al., 2014; Fontanesi et al., 2019; Pirrone,
Azab et al., 2018; Pirrone, Wen et al., 2018; Ratcliff & Frank, 2012).
Alternatively, one can allow within-trial noise in the diffusion
process or across-trial drift-rate-variability parameters to account
for OV (Bose et al., 2020; Brunton et al., 2013; Kvam & Pleskac,
2016; Ratcliff, Voskuilen and McKoon, 2018; Ratcliff, Voskuilen,
Teodorescu, 2018; Teodorescu et al., 2016). We see the variability
models as less conceptually different from the gaze-based models
because they are simply less specific about the source of noise in
the decision process. Moreover, there may be additional sources
of drift-rate variability beyond attention. In contrast, diffusion
models that condition boundary separation or non-decision time
on OV offer a very different interpretation.

In the gaze-dependent DDMs, the latent mechanism underly-
ing the OV effect is gaze-driven information gain. In the aDDM,
this is implemented through the θ parameter, which discounts
the subjective value of unlooked-at options (Krajbich et al., 2010;
Smith et al., 2019). We used models with multiplicative-gaze as
our default mechanism for the OV effect for the simple reason
that these models also explain gaze-dependent effects on choice
(Smith et al., 2019). Over the past decade there have been a
number of papers documenting the relationship between atten-
tion and choice (see Krajbich, 2019), including domains such as
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onsumer/food choice (Fisher, 2017; Folke, Jacobsen, Fleming, &
e Martino, 2016; Gluth, Kern, Kortmann, & Vitali, 2020; Kra-
bich et al., 2010; Sepulveda et al., 2020; Sullivan, Hutcherson,
arris, & Rangel, 2015; Towal et al., 2013), risky choice (Glick-
an et al., 2019; Gluth, Spektor, & Rieskamp, 2018; Johnson
Busemeyer, 2016; Stewart, Hermens and Matthews, 2016),

ntertemporal choice (Amasino et al., 2019; Stewart, Chater, &
rown, 2006), social preferences (Ashby et al., 2016; Smith et al.,
019; Stewart, Gächter, Noguchi and Mullett, 2016), aesthetic
hoice (Vaidya & Fellows, 2015), moral preferences (Fiedler &
löckner, 2015; Pärnamets et al., 2015), and reinforcement learn-
ng (Cavanagh, Malalasekera, Miranda, Hunt, & Kennerley, 2019;
avanagh et al., 2014; Konovalov & Krajbich, 2020). Moreover,
upport for gaze-based DDMs have also been found in the brain.
esearchers have found correlations between gaze-dependent
alue signals and activity in value-sensitive regions such as the
entromedial prefrontal cortex and ventral striatum (Hunt et al.,
018; Lim, O’Doherty, & Rangel, 2011). And neurophysiological
esearch with monkeys has found that visually attending to an
ppetitive cue increased neural firing in the orbitofrontal cortex
McGinty, 2019; McGinty, Rangel, & Newsome, 2016). Thus, we
elieve that it is vital to consider attention when trying to account
or the OV effect.

Our analysis of the empirical data would have been strength-
ned by directly comparing the DDM with a gaze-contingent
odel such as the aDDM. Unfortunately, a proper comparison

s not possible due to limitations of current fitting methods in
stimating models with time-dependent drift rates. Yet it is this
ery mechanism that generates the OV effect in gaze-contingent
odels. However, when we approximate the aDDM with a single
rift rate, the model can partially accommodate the OV effects
see Smith et al., 2019). When fit to the empirical data, these
odels produce qualitative patterns that resemble the non-gaze
odels reported in this paper, but with lower DIC/BPIC scores.
his suggests that multiplicative-gaze models can do as good of
job, if not better, than models without multiplicative-gaze.
One unanswered question is whether it would be problematic

o fit a gaze-based model to data generated from a non-gaze
ased DDM with varying noise or boundaries. Even without eye-
racking data, a multiplicative-gaze model could be fit to the
hoice-conditioned RT distributions. If there were OV effects in
he RTs (e.g., due to value-dependent boundaries), this would
resumably lead to such a model to be fit with significant gaze
ffects. We did not address this possibility here because every
tudy using multiplicative-gaze models has established a link be-
ween gaze and choice before fitting the model. For example, the
DDM’s attentional discounting parameter (θ ) can be estimated

directly from the relationship between gaze proportions, option
value, and choice probability (Smith et al., 2019), providing an
alternative validation for the RT-based estimates. Therefore, any
fits of a gaze-based model without eye-tracking data would need
to be interpreted with caution.

Interestingly, the work by Cavanagh et al. (2014) did incor-
porate eye-tracking data yet found value-dependent boundaries.
However, the researchers focused on an alternative formulation
for how attention influences drift rate, namely, an additive effect
that is constant regardless of the option values. This model does
not generate the OV effect and so does not address the issues
raised in this paper.

Cavanagh et al. (2014) also linked changing boundary sep-
aration to changes in pupil diameter. While this provides an
interesting new link between the DDM and biological measures,
it does not by itself confirm that boundaries are changing with
OV. It could be the case that pupil dilation simply reflects OV.
Neuroimaging studies have found that brain activity does reflect

OV, suggesting that this statistic is either represented or at least

14
correlated with some computation that is represented in the
brain (Frömer & Shenhav, 2019; Hunt et al., 2012).

Our analyses in the simulation study found that any model
that estimated boundary separation separately for each condition
was able to qualitatively capture the patterns found in the sim-
ulated data. Additionally, the best fitting model was one where
both boundary separation and non-decision time were estimated
separately for different OV conditions. However, the data gener-
ating process included gaze-weighted drift rates and not variable
boundary separation or non-decision time. We therefore advise
caution in interpreting decision boundaries or non-decision times
that vary with OV without also considering attention during the
value comparison process. More generally, we caution against
letting boundary separation or non-decision time vary based on
trial-level features, because what looks like evidence for varying
boundaries may simply be unaccounted-for drift-rate effects.

Overall-value-sensitive boundary separation can capture the
observed behavior because decreasing boundaries reduce RTs
while slightly decreasing accuracy. However, accuracy sometimes
increased with OV in the empirical data, which decreasing bound-
aries alone cannot accommodate. Moreover, this explanation re-
quires decision-makers to somehow adjust their decision bound-
aries each trial based on OV. According to joint neural-cognitive
computational modeling, information signaling conflict in the
anterior cingulate cortex amplify subthalamic conflict responses,
adjusting boundary separation through pathways separate from
those that accumulate noisy value signals (Botvinick et al., 2001;
Cavanagh et al., 2011; Ratcliff & Frank, 2012; Shenhav et al., 2013;
Vassena et al., 2020). These conflict signals could function as a
warning, indicating the need for more deliberation (Cavanagh
et al., 2011, 2014; Ratcliff & Frank, 2012). In contrast, models of
cognitive control allow for ad-hoc adjustments to boundary sep-
aration during high-difficulty contexts to facilitate more timely
responses (Botvinick et al., 2001; Shenhav et al., 2013; Vassena
et al., 2020). In either case, it remains unclear why this conflict-
mediated pathway would result in increased boundary separation
in Low OV trials relative to High OV trials. In fact, Cavanagh
et al. (2014) argue that a cautionary mechanism is needed to
prevent impulsive responses when high values are present. Ad-
justing decision boundaries trial-by-trial also seems cognitively
costly to the small, debatable advantage that it conveys in terms
of accuracy and RT. It also challenges the norms of diffusion
modeling, where the decision boundaries are typically set prior
to stimulus presentation and are constant within an experimental
condition (Ratcliff & McKoon, 2008).

On the other hand, OV-sensitive non-decision time is an un-
likely explanation for the observed behavior. Non-decision time,
representing time spent encoding information and/or executing a
response, primarily sets the floor for the fastest responses within
a condition (i.e., the first RT quantile), shifting all RTs by a fixed
amount, and should have no effect on accuracy (Ratcliff & Smith,
2004; Ratcliff & Tuerlinckx, 2002). The OV effect is almost absent
in the fastest RT quantiles, strongest in the slowest RT quantiles,
and has inconsistent but appreciable effects on accuracy. This
suggests that OV has an effect throughout the course of the deci-
sion process in a manner inconsistent with a non-decision-time
explanation.

In contrast, OV-sensitive noise parameters are more estab-
lished in the DDM literature. Researchers have developed dif-
fusion models where stimulus magnitudes are used to calculate
the noise in the decision process in auditory discrimination tasks
(Brunton et al., 2013), brightness discrimination tasks (Ratcliff,
Voskuilen, Teodorescu, 2018; Teodorescu et al., 2016), numeros-
ity magnitude estimation tasks (Ratcliff & McKoon, 2018), and
motion discrimination tasks (Ratcliff, Voskuilen, McKoon, 2018).
Additionally, the notion that perceptual noise increases in re-

lation to magnitude is well established in psychophysics, going
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ack to Fechner in 1860 (see Ratcliff, Voskuilen, Teodorescu, 2018
or a more thorough discussion of the history of magnitude-
ensitive noise in the psychophysics literature). However, despite
he theoretical appeal of DDMs with noise that increase with OV,
ur paper shows that such assumptions may not be necessary
nce one accounts for the role of gaze in two-alternative, value-
ased choice. Nonetheless, additional research is still needed
o determine whether attention plays a comparable role in the
erceptual tasks discussed above. Although the aDDM was de-
igned for value-based tasks, it has been successfully applied to
erceptual decisions, such as angle estimation (Tavares et al.,
017) and numerosity discrimination (Sepulveda et al., 2020).
e conjecture that the analysis of attention can offer insights

nto magnitude effects in domains outside of two-alternative,
alue-based tasks.
For these reasons, we recommend that researchers reassess

reviously reported associations between OV and boundary sepa-
ation, non-decision time, or noise parameters
Fontanesi et al., 2019; Green, Biele, & Heekeren, 2012; Pir-
one, Azab et al., 2018; Pirrone, Wen et al., 2018; Ratcliff &
rank, 2012; Ratcliff, Voskuilen, McKoon, 2018; Teodorescu et al.,
016). In some cases, this reassessment will not dramatically
lter the conclusions of the study. For example, Fontanesi et al.
2019) used value-dependent boundaries out of convenience to
ccount for the magnitude effects’ asymmetrical effect on RTs
nd accuracy rates, and the authors made no further attempts to
nterpret these patterns. In other cases, this reassessment will be
ore impactful. For example, Pirrone, Azab et al. (2018) and Pir-

one, Wen et al. (2018) concluded that the observation of value-
ependent boundaries was evidence of an adaptive decision pol-
cy that incorporates speed-value trade-offs. Teodorescu et al.
2016) offered a similar argument, connecting magnitude-based
oise parameters to a bottom-up speed-value trade-off. Green
t al. (2012) found that boundary separation decreased with
igher rewards in a perceptual task and linked those changes
o effective connectivity between cortico-striatal and cerebellar-
triatal brain systems. Considering that gaze-dependent effects
n our simulation study were captured by changes in boundary
eparation, non-decision time, and/or noise parameters, revisiting
hese experiments with eye-tracking is necessary to determine
hether these parameters were accurately capturing OV effects.
We also recommend that researchers account for OV effects

n experimental designs that include value-based, binary choice
asks. While previous research has carefully controlled for value
ifferences between conditions, these studies have often ignored
ow OV may differ across conditions and affect parameter es-
imates (Amasino et al., 2019; Cavanagh et al., 2011; Chen &
rajbich, 2018; De Martino, Fleming, Garrett, & Dolan, 2013;
iederich, 2003; Dutilh & Rieskamp, 2016; Hare, Schultz, Camerer,
’Doherty, & Rangel, 2011; Helfer & Shultz, 2014; Konovalov
Krajbich, 2019; Merkel & Lohse, 2019; Milosavljevic et al.,

010; Philiastides & Ratcliff, 2013; Pisauro, Fouragnan, Retzler, &
hiliastides, 2017; Rodriguez, Turner, & McClure, 2014; Shenhav,
traccia, Cohen, & Botvinick, 2014). Although we cannot be cer-
ain about how gaze-dependent drift rates would alter the results
n these studies, our current results suggest that several DDM
arameters can be sensitive to OV effects. For example, Milosavl-
evic et al. (2010) observed that high time pressure decreased
oundary separation and increased noise in the drift rate. While
hose are the expected results of applying time pressure, any
mbalance in the number of high-value trials between conditions
ould also have contributed to those effects.
As an aside, another limitation of DDM fits is that parameter

stimates, especially for across-trial variability parameters, tend
o be biased in small datasets (Boehm et al., 2018; Lerche, Voss,

Nagler, 2017; van Ravenzwaaij, Donkin, & Vandekerckhove,

15
2017). However, using hierarchical Bayesian estimation proce-
dures like HDDM is known to increase the reliability of parameter
estimates, even in smaller datasets (Boehm et al., 2018; Lerche
et al., 2017; Ratcliff & Childers, 2015).

In theory, multiplicative-gaze models could account for effects
that otherwise manifest as noise in model fits. In the standard
DDM, external noise can enter into the evidence accumulation
process through either within-trial fluctuations or across-trial
variability (Ratcliff, Voskuilen, McKoon, 2018; Ratcliff, Voskuilen,
Teodorescu, 2018). If gaze patterns were identical across-trials,
then shifts in gaze at the trial-level would contribute to within-
trial fluctuations, while if gaze patterns were different across tri-
als, that would additionally contribute to across-trial variability.
We would further expect that value would be more highly dis-
counted when it is more difficult to divide attention between op-
tions (e.g., when stimuli are widely separated on a display). How-
ever, additional work is needed to specify the exact relationship
between gaze patterns and these noise parameters.
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